Welcome, Guest: Register On Nairaland / LOGIN! / Trending / Recent / New
Stats: 3,225,822 members, 8,064,795 topics. Date: Wednesday, 29 January 2025 at 01:27 AM

Benjixade's Posts

Nairaland Forum / Benjixade's Profile / Benjixade's Posts

(1) (of 1 pages)

Education / Re: Nairaland Mathematics Clinic by Benjixade(m): 1:20pm On Mar 22, 2013
Richiez:

nice try bro, although you made some some mistakes especially at the point where you took log of both sides. e.g it ought to be log(x+y)= log5 and not logx + logy = log5. but i must admit, you did a very good job.

here's another approach;

x + y = 5.......(1)
x^x + y^y =31.......(2)

from eqn(1), x=5-y, hence we substitute this value for x in eqn(2).
(5-y)^(5-y) + y^y = 31.......(3)
now, we have reduced the problem to what value of y that must be inserted in eqn (3) to obtain 31.

a thorough look at eqns (1) & (2) shows that the values of x & y must be positive integers within the range 0<x<5 and 0<y<5
clearly, y=3.why not solve this equation instead of asumption aproach...what of If y tends to be a decimal in anoda problem?.

here's another approach;

x + y = 5.......(1)
x^x + y^y =31.......(2)

from eqn(1), x=5-y, hence we substitute this value for x in eqn(2).
(5-y)^(5-y) + y^y = 31.......(3)
now, we have reduced the problem to what value of y that must be inserted in eqn (3) to obtain 31.

a thorough look at eqns (1) & (2) shows that the values of x & y must be positive integers within the range 0<x<5 and 0<y<5
clearly, y=3
i.e (5-3)^(5-3) + 3^3
2^2 + 27
4+27=31
now that we have established that y=3, we shall substitute the value of y in eqn(1) to get x
recall that x+y=5
therefore; x+3=5 or x=5-3=2
hence, x=2 when y=3
[/color]
Richiez:

nice try bro, although you made some some mistakes especially at the point where you took log of both sides. e.g it ought to be log(x+y)= log5 and not logx + logy = log5. but i must admit, you did a very good job.

here's another approach;

x + y = 5.......(1)
x^x + y^y =31.......(2)

from eqn(1), x=5-y, hence we substitute this value for x in eqn(2).
(5-y)^(5-y) + y^y = 31.......(3)
now, we have reduced the problem to what value of y that must be inserted in eqn (3) to obtain 31.

a thorough look at eqns (1) & (2) shows that the values of x & y must be positive integers within the range 0<x<5 and 0<y<5
clearly, y=3
i.e (5-3)^(5-3) + 3^3
2^2 + 27
4+27=31
now that we have established that y=3, we shall substitute the value of y in eqn(1) to get x
recall that x+y=5
therefore; x+3=5 or x=5-3=2
hence, x=2 when y=3

(1) (of 1 pages)

(Go Up)

Sections: politics (1) business autos (1) jobs (1) career education (1) romance computers phones travel sports fashion health
religion celebs tv-movies music-radio literature webmasters programming techmarket

Links: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Nairaland - Copyright © 2005 - 2025 Oluwaseun Osewa. All rights reserved. See How To Advertise. 11
Disclaimer: Every Nairaland member is solely responsible for anything that he/she posts or uploads on Nairaland.